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Infinite games

Intuitively, we're interested in games that:

are between two players (ALICE and BOB);
are “turn-based” (ALICE starts);

two players compete;

with no draws;

of “perfect information”;

infinite (countable) runs.
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An infinite game is a pair G = (T, A) with T C M<“ and A C M¥
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Infinite games

Formally:

Definition

An infinite game is a pair G = (T, A) with T C M<“ and A C M¥
for some set M such that

(I) If t € T, then t [ k € T for all k < |t];
(IT) For all t € T there is an x € M such that t"x € T;
(ITI) AC Runs(G) ={Re M¥: R [ ne T forall n € w}.

All of our games will be infinite in this talk, so we will omit the
word “infinite” from now on.
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Infinite games

Dictionary

A sequence t € T is a moment of the game G.

A sequence R € Runs(G) ={Re M“:R[neT forall new}is
a run of the game G.

If t € T and |t| is even, then we say that it is ALICE's turn and
{X eM: t"xe T} is the set of all valid choices that ALICE can
make at t.

If t € T and |t| is odd, then we say that it is BOB's turn and
{x eM: t"xe T} is the set of all valid choices that BOB can
make at t.

If t € T and [t| =2n or |t| = 2n+ 1, then we say that t is at the
nth inning.

We say that A is the payoff set of G: a run R is won by ALICE if
R € A (and won by BOB otherwise).
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Infinite games

Example (Banach-Mazur game)

Given a non-empty topological space X, consider the following
game:
@ At the first inning:
e ALICE chooses a non-empty open set Up;
e BOB responds with a non-empty open set Vy C Up.
@ At the following nth innings:
e ALICE chooses a non-empty open set U, contained in the
open set V,,_1 chosen by BOB in the previous inning;
e BOB responds with a non-empty open set V,, C U,.
Then BoB wins the run (Ug, Vo, ..., Un, Vi, . .) if Ny Vo # 0
(and ALICE wins otherwise).
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Example (World's most boring game)

(X))

(by vacuity, with M = ()

7/35



Infinite games

Strategies

8/35



Infinite games

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given
by v C T which satisfies the following conditions:

8/35



Infinite games

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given
by v C T which satisfies the following conditions:

(@) v# 0

8/35



Infinite games

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given
by v C T which satisfies the following conditions:

(@) v #0;
(b) if s € v ALICE's turn, then there is a unique x such that
s™X € ;

8/35



Infinite games

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given
by v C T which satisfies the following conditions:

(@) v #0;
(b) if s € v ALICE's turn, then there is a unique x such that
s™X € ;

(c) if s € v is BOB's turn, then s”x € ~y for all x such that
s xeT.

8/35



Infinite games

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given
by v C T which satisfies the following conditions:

(@) v #0;

(b) if s € v ALICE's turn, then there is a unique x such that
s™X € ;

(c) if s € v is BOB's turn, then s”x € ~y for all x such that
s xeT.

If ALICE wins every run of the subgame given by -, then we say
that v is a winning strategy for ALICE.

8/35



Infinite games

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given
by v C T which satisfies the following conditions:
(@) v# 0
(b) if s € v ALICE's turn, then there is a unique x such that
s™X € ;
(c) if s € v is BOB's turn, then s”x € ~y for all x such that
s™xeT.

If ALICE wins every run of the subgame given by -, then we say
that v is a winning strategy for ALICE.

We denote the claim “there is a winning strategy for ALICE in G”
by ALICET G (and ALICEY G as its negation).
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Infinite games

Strategies

Definition (for BOB)

A strategy for BOB in the game G = (T, A) is a subgame given by

o C T which satisfies the following conditions:

(a) o #0;

(b) if s € o is BOB's turn, then there is a unique x € M such that
s"x € o;

(c) if s € o is ALICE's turn, then s”x € o for all x € M such that
s™xeT.

If BOB wins every run of the subgame given by -, then we say that
v is a winning strategy for BOB.

We denote the claim “there is a winning strategy for BOB in G"
by BoB1 G (and BOB Y G as its negation).
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Game morphisms

Definition (A-morphism)

An A-morphism G LA Gy between the games G; = (T, A;) and
Gy = (T2, Az) is a mapping f: T1 — T such that:

(a) Forall t € Ty, |f(t)] = |t];

(b) Forevery t € Ty and k < |t|, f(t|k) = f(t)[k;

(c) For every run R € A; in the game Gy, |Jf[R] € Ax.
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Game morphisms

Definition (' -morphism)

A B-morphism Gy A G, between the games G; = (T3, A1) and
Gy = (T2, Az) is a mapping f: T1 — T such that:

(a) Forall t € Ty, |f(t)] = |t];

(b) Forevery t € Ty and k < |t|, f(t|k) = f(t)[k;

(c) For every run RZA; in the game Gy, |J f[R]¢ZA.
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Game morphisms

@ For every game G = (T,A),id: T — T is an A-morphism
(and also a B-morphism) from G into G.
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Game morphisms

@ For every game G = (T,A),id: T — T is an A-morphism
(and also a B-morphism) from G into G.

o If G'=(T',A) is a subgame of G = (T, A), then the
inclusion i: T" — T is an A-morphism (and also a
B-morphism).

A
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Game morphisms

Proposition

Let G = (Tl,Al), G, = (T2,A2) and Gz = (T3,A3) be games.
If f: Ty — Ty is an A-morphism from Gy into Gy and g: To — T3
is an A-morphism from Gy into Gz, then g o f is an A-morphism
from Gy into Gjs.
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Game morphisms

Proposition

Let G = (Tl,Al), G, = (T2,A2) and Gz = (T3,A3) be games.
If f: T1 — Ty is a B-morphism from Gy into Gy and g: To — T3
is a B-morphism from G into Gz, then g o f is a B-morphism
from Gy into Gjs.
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Game morphisms

Let us recall the following theorem from Group Theory, which
states that symmetric groups are, in some sense, “universal”:

Theorem (A. Cayley — 1854)

For every group G there is a set X(G) such that G is isomorphic
to a subgroup of the symmetric group of X(G).
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Let us recall the following theorem from Group Theory, which
states that symmetric groups are, in some sense, “universal”:

Theorem (A. Cayley — 1854)

For every group G there is a set X(G) such that G is isomorphic
to a subgroup of the symmetric group of X(G).

We also have the “universality” of the Banach-Mazur game:

Theorem (D., P. Szeptycki, W. Tholen — 2027)

For every game G there is a metrizable space K(G) such that G is
isomorphic to a subgame of the Banach-Mazur game over K(G).
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Categories of games

@ Games,: objects are games and morphisms are A-morphisms.

@ Gamesg: objects are games and morphisms are B-morphisms.
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Categories of games

Proposition

The categories Gamesp and Gamesg are isomorphic.
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Categories of games

Theorem (D., P. Szeptycki, W. Tholen — 2027?)

Suppose C is either Gamesy or Gamesp. Then:

o C js complete and co-complete.
o C is cartesian closed.

@ C has orthogonal factorization systems.
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Gamespy
MetGame GraphGame <= FunGame
g%’}GaMeoMet g /jpr f ’BFunPr
Sub (CUItMet; ) Sub (Tree) «——— Sub (Sets"”)
(1) (1) (1]
CUItMet; Tree = Sets"”

Frgt . Sets — L1m
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Categories of games

Topological games as functors

Example (Gl(QXv Qx))
Given a non-empty topological space X and a fixed x € X,
consider the following game: in each inning n € w,

@ ALICE chooses A, C X such that x € A,,;
@ BOB responds with a, € A,.

BoB wins the run (Ao, ag, - .., An, an, ... if, for every k € N,
x €{ap:n>k} (ALICE wins otherwise).
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Categories of games

Topological games as functors

Example (G1(Q2x, Qx))

The game G1(€x, Q) can naturally be seen as a covariant functor
from Top, into Gamesg:
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Categories of games

Topological games as functors

Example (G1(Qx, 2x))
The game G1(€x, Q) can naturally be seen as a covariant functor
from Top, into Gamesg:
@ On objects, Tight((X,x)) = G1(Lx, Q) over X.
@ On morphisms, given a continuous : X — Y such that
f(x) =y, let

. Tight(f) .
Tight((X, x)) > Tight((Y,y))

<A0, ao,...,An, a,,) — <f[A0], f(ao), R f[An], f(a,,))
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Categories of games

Topological games as functors

Example (G1(€,Q))
Given a topological space X, consider the following game: in each
inning n € w,

@ ALICE chooses an w-cover U, that is, an open cover U, such
that
VF € [X]S¥3U € U,(F C U),

@ BOB responds with U, € U,,.

BoB wins the run (U, Uo, ..., Un, Uy, .. .) if, for every k € w,
{Un:n>k}is an w-cover (ALICE wins otherwise).
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Topological games as functors

Example (G1(€,Q))

The game G1(€,2) can naturally be seen as a contravariant
functor from Top into Gamesg:
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Categories of games

Topological games as functors

Example (G1(€,Q))

The game G1(€,2) can naturally be seen as a contravariant
functor from Top into Gamesg:

@ On objects, Cover(X) = G1(,Q) over X.

@ On morphisms, given a continuous f: X — Y, let

Cover(f)
Cover(Y) y Cover(X)

(Uo, Up, ..., Up, Un) — (FMtho], F(Uh), ..., £ [Un], FH(Un))

25/35
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A classical result

If X is a T3% space, then
o ATG1(Q,Q) over X <= A1G1(Q5,5) over Cp(X)
(M. Scheepers — 1997)
o B1G1(Q,Q) over X <= B1G1(Qg,85) over Cp(X)
(M. Scheepers — 2014)

A
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o ATG1(Q,Q) over X <= A1G1(Q5,5) over Cp(X)
(M. Scheepers — 1997)
o B1G1(Q,Q) over X <= B1G1(Qg,85) over Cp(X)
(M. Scheepers — 2014)

It would be neat to find some natural transformations that entail
the above result.
Issues:

@ The domain of G1(Qx,Q2x)’s functor is Top., while the
domain of G1(£,Q)’s functor is Top;

e G1(Qy,Qy)'s functor is covariant, while G1(€2,Q)’s functor is
contravariant.
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A classical result

Consider the contravariant functor D : Vectx — Vectk such that
@ on objects, D(V) = V*,
@ on morphisms, if f: Vi — V; is a linear map,

i =0 v

Y2 — @pof
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A classical result

Consider the contravariant functor C,, : Top — Top, such that
@ on objects, Cp,(X) = (C,(X),0),
@ on morphisms, if f: X; — X5 is continuous,

(Co(%2),0) 25 (C,(x0),0)

802}—>g020f
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A classical result

Now note that the functors that we actually want to compare are
Cover with Tight oC,!
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A classical result

Now note that the functors that we actually want to compare are
Cover with Tight oC,! Recall:

If X is a T3% space, then
o ATG1(Q,9Q) over X <= A1G1(Qg,5) over Cp(X)
(M. Scheepers — 1997)

o B1G1(Q,Q) over X <= B1G1(Qg,5) over Cp(X)
(M. Scheepers — 2014)

That is, we want to find some “nice” natural transformations
between Cover with Tight oC,,.
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A classical result

Intuitively, “nice” natural transformations are natural
transformations that, for each T;1 space X, somehow “translates’
2

winning strategies in Tight(X) to winning strategies in Cover(X)
and vice-versa.
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winning strategies in Tight(X) to winning strategies in Cover(X)
and vice-versa.

Indeed, we have:

Informal Theorem (D., P. Szeptycki, W. Tholen — 2027)

There are two “nice” transformations that, together, entail
Scheepers result.
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(Tight oCp)(X) " Cover(X)
<A07800a"'aAn7L)0n> — <u0(A0)a§0071(IO)7'"7MO(AH)7@;1(IO)>
where

U(A) = { o (] -1L1):pcA}.

o Let (TightoC,)" = Cover’ be such that
(TightoCp)'(X) x Cover/(X)
(Ao, 0, -+ -y Anyn) —— (Uo(Ao), 05 (lo), - - -, Un(An), 071 (1n))

where
= (o ([ aml) een):
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