Winter School in Abstract Analysis 2023 Infinitely ludic categories

Matheus Duzi¹

Joint work with P. Szeptycki and W. Tholen

University of São Paulo - York University matheus.duzi.costa@usp.br - m.duzi@yorku.ca

January 31, 2023

¹FAPESP grant number 2021/13427-9

Table of Contents

Infinite games Game morphisms Categories of games

A classical result References

Table of Contents

2 Game morphisms

3 Categories of games

4 A classical result

Intuitively, we're interested in games that:

• are between two players (ALICE and BOB);

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);
- two players compete;

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);
- two players compete;
- with no draws;

Intuitively, we're interested in games that:

• are between two players (ALICE and BOB);

イロト 不得 トイヨト イヨト

-

3/35

- are "turn-based" (ALICE starts);
- two players compete;
- with no draws;
- of "perfect information";

- are between two players (ALICE and BOB);
- are "turn-based" (ALICE starts);
- two players compete;
- with no draws;
- of "perfect information";
- infinite (countable) runs.

Game morphisms Categories of games A classical result References

Formally:

Formally:

Definition

An infinite game is a pair G = (T, A) with $T \subset M^{<\omega}$ and $A \subset M^{\omega}$ for some set M such that (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$; (III) $A \subset \operatorname{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}.$

Formally:

Definition

An *infinite game* is a pair G = (T, A) with $T \subset M^{<\omega}$ and $A \subset M^{\omega}$ for some set M such that (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$; (III) $A \subset \operatorname{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$. If $t = \langle x_0, \dots, x_{n-1} \rangle$, then

$$|t| = n$$

Formally:

Definition

An *infinite game* is a pair G = (T, A) with $T \subset M^{<\omega}$ and $A \subset M^{\omega}$ for some set M such that (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$; (III) $A \subset \operatorname{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$.

If $t = \langle x_0, \ldots, x_n \rangle$ e $k \leq n$, then

$$t \upharpoonright k = \langle x_0, \ldots, x_{k-1} \rangle$$

Formally:

Definition

An *infinite game* is a pair G = (T, A) with $T \subset M^{<\omega}$ and $A \subset M^{\omega}$ for some set M such that (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$; (III) $A \subset \operatorname{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$.

If $t = \langle x_0, \ldots, x_n \rangle$, then

$$t^{\frown}x = \langle x_0, \ldots, x_n, x \rangle$$

Formally:

Definition

An *infinite game* is a pair G = (T, A) with $T \subset M^{<\omega}$ and $A \subset M^{\omega}$ for some set M such that (I) If $t \in T$, then $t \upharpoonright k \in T$ for all $k \leq |t|$; (II) For all $t \in T$ there is an $x \in M$ such that $t^{\frown}x \in T$; (III) $A \subset \operatorname{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}.$

All of our games will be infinite in this talk, so we will omit the word "infinite" from now on.

Game morphisms Categories of games A classical result References

• A sequence $t \in T$ is a *moment* of the game G.

- A sequence $t \in T$ is a *moment* of the game *G*.
- A sequence $R \in \text{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$ is a **run** of the game G.

- A sequence $t \in T$ is a *moment* of the game *G*.
- A sequence $R \in \text{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$ is a **run** of the game G.
- If t ∈ T and |t| is even, then we say that it is ALICE's turn and { x ∈ M : t^x ∈ T } is the set of all valid choices that ALICE can make at t.

- A sequence $t \in T$ is a *moment* of the game *G*.
- A sequence $R \in \text{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$ is a **run** of the game G.
- If t ∈ T and |t| is even, then we say that it is ALICE's turn and { x ∈ M : t^x ∈ T } is the set of all valid choices that ALICE can make at t.
- If $t \in T$ and |t| is odd, then we say that it is BOB's *turn* and $\{x \in M : t \land x \in T\}$ is the set of all valid choices that BOB can make at t.

- A sequence $t \in T$ is a *moment* of the game *G*.
- A sequence $R \in \text{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$ is a **run** of the game G.
- If t ∈ T and |t| is even, then we say that it is ALICE's turn and { x ∈ M : t^x ∈ T } is the set of all valid choices that ALICE can make at t.
- If $t \in T$ and |t| is odd, then we say that it is BOB's *turn* and $\{x \in M : t \land x \in T\}$ is the set of all valid choices that BOB can make at t.
- If $t \in T$ and |t| = 2n or |t| = 2n + 1, then we say that t is at the *n*th inning.

Dictionary

- A sequence $t \in T$ is a *moment* of the game *G*.
- A sequence $R \in \text{Runs}(G) = \{R \in M^{\omega} : R \upharpoonright n \in T \text{ for all } n \in \omega\}$ is a **run** of the game G.
- If t ∈ T and |t| is even, then we say that it is ALICE's turn and { x ∈ M : t^x ∈ T } is the set of all valid choices that ALICE can make at t.
- If $t \in T$ and |t| is odd, then we say that it is BOB's *turn* and $\{x \in M : t \land x \in T\}$ is the set of all valid choices that BOB can make at t.
- If $t \in T$ and |t| = 2n or |t| = 2n + 1, then we say that t is at the *n*th inning.
- We say that A is the *payoff set* of G: a run R is won by ALICE if $R \in A$ (and won by BOB otherwise).

イロン 不得 とうほう イロン 二日

Example (Banach-Mazur game)

Example (Banach-Mazur game)

Given a non-empty topological space X, consider the following game:

• At the first inning:

Example (Banach-Mazur game)

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;

Example (Banach-Mazur game)

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subset U_0$.

Example (Banach-Mazur game)

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subset U_0$.
- At the following *n*th innings:

Example (Banach-Mazur game)

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subset U_0$.
- At the following *n*th innings:
 - ALICE chooses a non-empty open set U_n contained in the open set V_{n-1} chosen by BOB in the previous inning;

Example (Banach-Mazur game)

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subset U_0$.
- At the following *n*th innings:
 - ALICE chooses a non-empty open set U_n contained in the open set V_{n-1} chosen by BOB in the previous inning;
 - BOB responds with a non-empty open set $V_n \subset U_n$.

Example (Banach-Mazur game)

Given a non-empty topological space X, consider the following game:

- At the first inning:
 - ALICE chooses a non-empty open set U_0 ;
 - BOB responds with a non-empty open set $V_0 \subset U_0$.
- At the following *n*th innings:
 - ALICE chooses a non-empty open set U_n contained in the open set V_{n-1} chosen by BOB in the previous inning;
 - BOB responds with a non-empty open set $V_n \subset U_n$.

Then BOB wins the run $\langle U_0, V_0, \ldots, U_n, V_n, \ldots \rangle$ if $\bigcap_{n \in \omega} V_n \neq \emptyset$ (and ALICE wins otherwise).

Game morphisms Categories of games A classical result References

Example (World's most boring game)

 (\emptyset, \emptyset)

Game morphisms Categories of games A classical result References

Example (World's most boring game)

$$(\emptyset, \emptyset)$$

(by vacuity, with $M = \emptyset$)

Game morphisms Categories of games A classical result References

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given by $\gamma \subset T$ which satisfies the following conditions:

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given by $\gamma \subset T$ which satisfies the following conditions: (a) $\gamma \neq \emptyset$;

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given by γ ⊂ T which satisfies the following conditions:
(a) γ ≠ Ø;
(b) if s ∈ γ ALICE's turn, then there is a unique x such that s[^]x ∈ γ;

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given by $\gamma \subset T$ which satisfies the following conditions:

(a)
$$\gamma \neq \emptyset$$
;

- (b) if $s \in \gamma$ ALICE's turn, then there is a unique x such that $s^{\gamma}x \in \gamma$;
- (c) if $s \in \gamma$ is BOB's turn, then $s^{\gamma}x \in \gamma$ for all x such that $s^{\gamma}x \in T$.

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given by $\gamma \subset T$ which satisfies the following conditions: (a) $\gamma \neq \emptyset$:

- (b) if $s \in \gamma$ ALICE's turn, then there is a unique x such that $s^{\gamma}x \in \gamma$;
- (c) if $s \in \gamma$ is BOB's turn, then $s^{\gamma}x \in \gamma$ for all x such that $s^{\gamma}x \in T$.

If ALICE wins every run of the subgame given by γ , then we say that γ is a winning strategy for ALICE.

Strategies

Definition (for ALICE)

A strategy for ALICE in the game G = (T, A) is a subgame given by $\gamma \subset T$ which satisfies the following conditions:

(a)
$$\gamma \neq \emptyset$$
;

- (b) if $s \in \gamma$ ALICE's turn, then there is a unique x such that $s^{\gamma}x \in \gamma$;
- (c) if $s \in \gamma$ is BOB's turn, then $s^{\gamma}x \in \gamma$ for all x such that $s^{\gamma}x \in T$.

If ALICE wins every run of the subgame given by γ , then we say that γ is a *winning* strategy for ALICE. We denote the claim "there is a winning strategy for ALICE in G" by ALICE $\uparrow G$ (and ALICE $\uparrow G$ as its negation).

Strategies

Definition (for BOB)

A strategy for BOB in the game G = (T, A) is a subgame given by $\sigma \subset T$ which satisfies the following conditions:

(a)
$$\sigma \neq \emptyset$$
;

- (b) if $s \in \sigma$ is BOB's turn, then there is a unique $x \in M$ such that $s^{\uparrow}x \in \sigma$;
- (c) if $s \in \sigma$ is ALICE's turn, then $s^{\gamma}x \in \sigma$ for all $x \in M$ such that $s^{\gamma}x \in T$.

If BOB wins every run of the subgame given by γ , then we say that γ is a *winning* strategy for BOB. We denote the claim "there is a winning strategy for BOB in G" by BOB $\uparrow G$ (and BOB $\ddagger G$ as its negation).

< □ > < ⑦ > < ミ > < ミ > ミ のへの 9/35

Table of Contents

Infinite games

2 Game morphisms

3 Categories of games

4 A classical result

Definition (A-morphism)

An A-morphism $G_1 \xrightarrow{f} G_2$ between the games $G_1 = (T_1, A_1)$ and $G_2 = (T_2, A_2)$ is a mapping $f: T_1 \to T_2$ such that:

Definition (A-morphism)

An A-morphism $G_1 \xrightarrow{f} G_2$ between the games $G_1 = (T_1, A_1)$ and $G_2 = (T_2, A_2)$ is a mapping $f: T_1 \rightarrow T_2$ such that: (a) For all $t \in T_1$, |f(t)| = |t|;

Definition (A-morphism)

An A-morphism $G_1 \xrightarrow{f} G_2$ between the games $G_1 = (T_1, A_1)$ and $G_2 = (T_2, A_2)$ is a mapping $f: T_1 \rightarrow T_2$ such that: (a) For all $t \in T_1$, |f(t)| = |t|; (b) For every $t \in T_1$ and $k \le |t|$, $f(t \upharpoonright k) = f(t) \upharpoonright k$;

Definition (A-morphism)

An A-morphism $G_1 \xrightarrow{f} G_2$ between the games $G_1 = (T_1, A_1)$ and $G_2 = (T_2, A_2)$ is a mapping $f: T_1 \to T_2$ such that: (a) For all $t \in T_1$, |f(t)| = |t|; (b) For every $t \in T_1$ and $k \le |t|$, $f(t \upharpoonright k) = f(t) \upharpoonright k$; (c) For every run $R \in A_1$ in the game $G_1, \bigcup f[R] \in A_2$.

Definition (**B**-morphism)

A B-morphism
$$G_1 \xrightarrow{f} G_2$$
 between the games $G_1 = (T_1, A_1)$ and
 $G_2 = (T_2, A_2)$ is a mapping $f: T_1 \to T_2$ such that:
(a) For all $t \in T_1$, $|f(t)| = |t|$;
(b) For every $t \in T_1$ and $k \le |t|$, $f(t \upharpoonright k) = f(t) \upharpoonright k$;
(c) For every run $R \notin A_1$ in the game $G_1, \bigcup f[R] \notin A_2$.

Examples

 For every game G = (T, A), id: T → T is an A-morphism (and also a B-morphism) from G into G.

Examples

- For every game G = (T, A), id: T → T is an A-morphism (and also a B-morphism) from G into G.
- If G' = (T', A') is a subgame of G = (T, A), then the inclusion i: T' → T is an A-morphism (and also a B-morphism).

Proposition

Let $G_1 = (T_1, A_1)$, $G_2 = (T_2, A_2)$ and $G_3 = (T_3, A_3)$ be games. If $f: T_1 \rightarrow T_2$ is an A-morphism from G_1 into G_2 and $g: T_2 \rightarrow T_3$ is an A-morphism from G_2 into G_3 , then $g \circ f$ is an A-morphism from G_1 into G_3 .

Proposition

Let $G_1 = (T_1, A_1)$, $G_2 = (T_2, A_2)$ and $G_3 = (T_3, A_3)$ be games. If $f : T_1 \rightarrow T_2$ is a B-morphism from G_1 into G_2 and $g : T_2 \rightarrow T_3$ is a B-morphism from G_2 into G_3 , then $g \circ f$ is a B-morphism from G_1 into G_3 . Let us recall the following theorem from Group Theory, which states that symmetric groups are, in some sense, "universal":

Theorem (A. Cayley – 1854)

For every group G there is a set X(G) such that G is isomorphic to a subgroup of the symmetric group of X(G).

Let us recall the following theorem from Group Theory, which states that symmetric groups are, in some sense, "universal":

Theorem (A. Cayley – 1854)

For every group G there is a set X(G) such that G is isomorphic to a subgroup of the symmetric group of X(G).

We also have the "universality" of the Banach-Mazur game:

Theorem (D., P. Szeptycki, W. Tholen – 202?)

For every game G there is a metrizable space K(G) such that G is isomorphic to a subgame of the Banach-Mazur game over K(G).

Table of Contents

Infinite games

2 Game morphisms

3 Categories of games

A classical result

- $\bullet~\mbox{Games}_A :$ objects are games and morphisms are $A\mbox{-morphisms}.$
- $\bullet~\mbox{Games}_{\rm B}:~\mbox{objects}$ are games and morphisms are $\rm B\text{-}morphisms.$

Proposition

The categories $\textbf{Games}_{\rm A}$ and $\textbf{Games}_{\rm B}$ are isomorphic.

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < © 19 / 35

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either $Games_A$ or $Games_B$. Then:

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either $Games_A$ or $Games_B$. Then:

• C is complete and co-complete.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

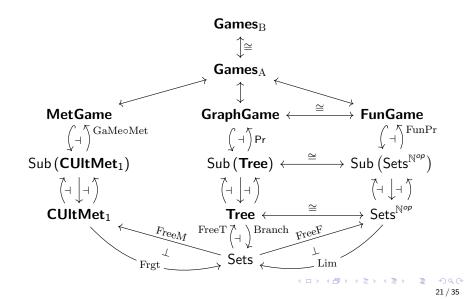
Suppose C is either $Games_A$ or $Games_B$. Then:

- C is complete and co-complete.
- C is cartesian closed.

Theorem (D., P. Szeptycki, W. Tholen – 202?)

Suppose C is either \textbf{Games}_{A} or $\textbf{Games}_{B}.$ Then:

- C is complete and co-complete.
- C is cartesian closed.
- C has orthogonal factorization systems.



Topological games as functors

Topological games as functors

Example $(G_1(\Omega_x, \Omega_x))$

Given a non-empty topological space X and a fixed $x \in X$, consider the following game: in each inning $n \in \omega$,

- ALICE chooses $A_n \subset X$ such that $x \in \overline{A_n}$;
- BOB responds with $a_n \in A_n$.

BOB wins the run $\langle A_0, a_0, \dots, A_n, a_n, \dots \rangle$ if, for every $k \in \mathbb{N}$, $x \in \overline{\{a_n : n \ge k\}}$ (ALICE wins otherwise).

Topological games as functors

Example $(G_1(\Omega_x, \Omega_x))$

The game $G_1(\Omega_x, \Omega_x)$ can naturally be seen as a covariant functor from Top_{*} into **Games**_B:

Topological games as functors

Example $(G_1(\Omega_x, \Omega_x))$

The game $G_1(\Omega_x, \Omega_x)$ can naturally be seen as a covariant functor from Top_{*} into **Games**_B:

• On objects, $Tight((X, x)) = G_1(\Omega_x, \Omega_x)$ over X.

Topological games as functors

Example $(G_1(\Omega_x, \Omega_x))$

The game $G_1(\Omega_x, \Omega_x)$ can naturally be seen as a covariant functor from Top_{*} into **Games**_B:

- On objects, $Tight((X, x)) = G_1(\Omega_x, \Omega_x)$ over X.
- On morphisms, given a continuous $f: X \to Y$ such that f(x) = y, let

Topological games as functors

Example $(G_1(\Omega_x, \Omega_x))$

The game $G_1(\Omega_x, \Omega_x)$ can naturally be seen as a covariant functor from Top_{*} into **Games**_B:

- On objects, $Tight((X, x)) = G_1(\Omega_x, \Omega_x)$ over X.
- On morphisms, given a continuous $f: X \to Y$ such that f(x) = y, let

$$\mathsf{Tight}((X, x)) \xrightarrow{\mathsf{Tight}(f)} \mathsf{Tight}((Y, y))$$
$$\langle A_0, a_0, \dots, A_n, a_n \rangle \longmapsto \langle f[A_0], f(a_0), \dots, f[A_n], f(a_n) \rangle$$

Topological games as functors

Topological games as functors

Example $(G_1(\Omega, \Omega))$

Given a topological space X, consider the following game: in each inning $n \in \omega$,

• ALICE chooses an ω -cover \mathcal{U}_n , that is, an open cover \mathcal{U}_n such that

$$\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}_n(F \subset U),$$

• BOB responds with $U_n \in \mathcal{U}_n$.

BOB wins the run $\langle U_0, U_0, \dots, U_n, U_n, \dots \rangle$ if, for every $k \in \omega$, $\{ U_n : n \ge k \}$ is an ω -cover (ALICE wins otherwise).

Topological games as functors

Example $(G_1(\Omega, \Omega))$

The game $G_1(\Omega, \Omega)$ can naturally be seen as a contravariant functor from Top into **Games**_B:

Topological games as functors

Example $(G_1(\Omega, \Omega))$

The game $G_1(\Omega, \Omega)$ can naturally be seen as a contravariant functor from Top into **Games**_B:

• On objects, $Cover(X) = G_1(\Omega, \Omega)$ over X.

Topological games as functors

Example $(G_1(\Omega, \Omega))$

The game $G_1(\Omega, \Omega)$ can naturally be seen as a contravariant functor from Top into **Games**_B:

- On objects, $Cover(X) = G_1(\Omega, \Omega)$ over X.
- On morphisms, given a continuous $f: X \to Y$, let

Topological games as functors

Example $(G_1(\Omega, \Omega))$

The game $G_1(\Omega, \Omega)$ can naturally be seen as a contravariant functor from Top into **Games**_B:

- On objects, $Cover(X) = G_1(\Omega, \Omega)$ over X.
- On morphisms, given a continuous $f: X \to Y$, let

$$Cover(Y) \xrightarrow{Cover(f)} Cover(X)$$
$$\langle \mathcal{U}_0, \mathcal{U}_0, \dots, \mathcal{U}_n, \mathcal{U}_n \rangle \longmapsto \langle f^{-1}[\mathcal{U}_0], f^{-1}(\mathcal{U}_0), \dots, f^{-1}[\mathcal{U}_n], f^{-1}(\mathcal{U}_n) \rangle$$

Table of Contents

Infinite games

2 Game morphisms

3 Categories of games

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers - 1997)
- $B \uparrow G_1(\Omega, \Omega)$ over $X \iff B \uparrow G_1(\Omega_{\overline{0}}, \Omega_{\overline{0}})$ over $C_p(X)$ (M. Scheepers – 2014)

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers - 1997)
- $B \uparrow G_1(\Omega, \Omega)$ over $X \iff B \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers – 2014)

It would be neat to find some natural transformations that entail the above result.

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers - 1997)
- $B \uparrow G_1(\Omega, \Omega)$ over $X \iff B \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers – 2014)

It would be neat to find some natural transformations that entail the above result.

Issues:

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers - 1997)
- $B \uparrow G_1(\Omega, \Omega)$ over $X \iff B \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers – 2014)

It would be neat to find some natural transformations that entail the above result.

Issues:

The domain of G₁(Ω_x, Ω_x)'s functor is Top_{*}, while the domain of G₁(Ω, Ω)'s functor is Top;

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers - 1997)
- $B \uparrow G_1(\Omega, \Omega)$ over $X \iff B \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers – 2014)

It would be neat to find some natural transformations that entail the above result.

Issues:

- The domain of G₁(Ω_x, Ω_x)'s functor is Top_{*}, while the domain of G₁(Ω, Ω)'s functor is Top;
- G₁(Ω_x, Ω_x)'s functor is covariant, while G₁(Ω, Ω)'s functor is contravariant.

Consider the contravariant functor $\mathrm{D}:\mathsf{Vect}_{\mathcal{K}}\to\mathsf{Vect}_{\mathcal{K}}$ such that

Consider the contravariant functor $D : Vect_K \rightarrow Vect_K$ such that • on objects, $D(V) = V^*$,

Consider the contravariant functor $\mathrm{D}:\mathsf{Vect}_{\mathcal{K}}\to\mathsf{Vect}_{\mathcal{K}}$ such that

• on objects,
$$D(V) = V^*$$
,

• on morphisms, if $f: V_1 \rightarrow V_2$ is a linear map,

$$V_2^* \xrightarrow{\mathrm{D}(f)} V_1^*$$
$$\varphi_2 \longmapsto \varphi_2 \circ f$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

28 / 35

Consider the contravariant functor $C_p:\mathsf{Top}\to\mathsf{Top}_*$ such that

- on objects, $C_p(X) = (C_p(X), \overline{0})$,
- on morphisms, if $f: X_1 \to X_2$ is continuous,

$$(\mathrm{C}_{\mathrm{p}}(X_2),\overline{0}) \xrightarrow{\mathrm{C}_{\mathrm{p}}(f)} (\mathrm{C}_{\mathrm{p}}(X_1),\overline{0})$$

$$\varphi_2 \longmapsto \varphi_2 \circ f$$

Now note that the functors that we actually want to compare are Cover with $\mathsf{Tight}\circ C_p!$

Now note that the functors that we actually want to compare are Cover with Tight $\circ C_p!$ Recall:

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers - 1997)
- $B \uparrow G_1(\Omega, \Omega)$ over $X \iff B \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers – 2014)

Now note that the functors that we actually want to compare are Cover with Tight $\circ C_p!$ Recall:

Theorem

If X is a $T_{3\frac{1}{2}}$ space, then

- $A \uparrow G_1(\Omega, \Omega)$ over $X \iff A \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers - 1997)
- $B \uparrow G_1(\Omega, \Omega)$ over $X \iff B \uparrow G_1(\Omega_{\bar{0}}, \Omega_{\bar{0}})$ over $C_p(X)$ (M. Scheepers – 2014)

That is, we want to find some "nice" natural transformations between Cover with Tight $\circ C_p.$

Issues we had:

Issues we had:

 The domain of G₁(Ω_x, Ω_x)'s functor is Top_{*}, while the domain of G₁(Ω, Ω)'s functor is Top;

Issues we had:

 The domain of G₁(Ω_x, Ω_x)'s functor is Top_{*}, while the domain of G₁(Ω, Ω)'s functor is Top; (Tight ∘C_p's domain is now Top)

Issues we had:

- The domain of G₁(Ω_x, Ω_x)'s functor is Top_{*}, while the domain of G₁(Ω, Ω)'s functor is Top; (Tight ∘C_p's domain is now Top)
- $G_1(\Omega_x, \Omega_x)$'s functor is covariant, while $G_1(\Omega, \Omega)$'s functor is contravariant.

Issues we had:

- The domain of G₁(Ω_x, Ω_x)'s functor is Top_{*}, while the domain of G₁(Ω, Ω)'s functor is Top; (Tight ∘C_p's domain is now Top)
- G₁(Ω_x, Ω_x)'s functor is covariant, while G₁(Ω, Ω)'s functor is contravariant. (Tight ∘C_p is now contravariant)

Intuitively, "nice" natural transformations are natural transformations that, for each $T_{3\frac{1}{2}}$ space X, somehow "translates" winning strategies in Tight(X) to winning strategies in Cover(X) and vice-versa.

Intuitively, "nice" natural transformations are natural transformations that, for each $T_{3\frac{1}{2}}$ space X, somehow "translates" winning strategies in Tight(X) to winning strategies in Cover(X) and vice-versa. Indeed, we have: Intuitively, "nice" natural transformations are natural transformations that, for each $T_{3\frac{1}{2}}$ space X, somehow "translates" winning strategies in Tight(X) to winning strategies in Cover(X) and vice-versa. Indeed, we have:

Informal Theorem (D., P. Szeptycki, W. Tholen – 202?)

There are two "nice" transformations that, together, entail Scheepers result.

Namely:

Namely:

• Let
$$(\mathsf{Tight} \circ C_p) \xrightarrow{\eta} \mathsf{Cover}$$
 be such that

$$(\mathsf{Tight} \circ C_{p})(X) \xrightarrow{\eta_{X}} \mathsf{Cover}(X)$$
$$\langle A_{0}, \varphi_{0}, \dots, A_{n}, \varphi_{n} \rangle \longmapsto \langle \mathcal{U}_{0}(A_{0}), \varphi_{0}^{-1}(I_{0}), \dots, \mathcal{U}_{0}(A_{n}), \varphi_{n}^{-1}(I_{0}) \rangle$$
where

$$\mathcal{U}_0(A) = \left\{ \varphi^{-1}(] - 1, 1[) : \varphi \in A \right\}.$$

Namely:

• Let
$$(\mathsf{Tight} \circ C_p) \xrightarrow{\eta} \mathsf{Cover}$$
 be such that

$$(\mathsf{Tight} \circ C_{\mathbf{p}})(X) \xrightarrow{\eta_{X}} \mathsf{Cover}(X)$$
$$\langle A_{0}, \varphi_{0}, \dots, A_{n}, \varphi_{n} \rangle \longmapsto \langle \mathcal{U}_{0}(A_{0}), \varphi_{0}^{-1}(I_{0}), \dots, \mathcal{U}_{0}(A_{n}), \varphi_{n}^{-1}(I_{0}) \rangle$$
where

$$\mathcal{U}_0(A) = \left\{ \varphi^{-1}(]-1,1[) : \varphi \in A \right\}.$$

• Let $(\mathsf{Tight} \circ C_p)' \xrightarrow{\varepsilon} \mathsf{Cover}'$ be such that

$$\begin{array}{ccc} (\mathsf{Tight} \circ \mathrm{C_p})'(X) & & \xrightarrow{\varepsilon_X} & \mathsf{Cover}'(X) \\ \langle A_0, \varphi_0, \dots, A_n, \varphi_n \rangle & \longmapsto & \langle \mathcal{U}_0(A_0), \varphi_0^{-1}(I_0), \dots, \mathcal{U}_n(A_n), \varphi_n^{-1}(I_n) \rangle \\ \text{where} \end{array}$$

$$\mathcal{U}_n(A) = \left\{ \varphi^{-1}\left(\left| \frac{-1}{n+1}, \frac{1}{n+1} \right| \right) : \varphi \in A \right\}_{\mathbb{R}}, \quad \mathbb{R} \to \mathbb{R}$$

Namely:

• Let
$$(\mathsf{Tight} \circ C_p) \xrightarrow{\eta} \mathsf{Cover}$$
 be such that

$$(\mathsf{Tight} \circ C_{\mathbf{p}})(X) \xrightarrow{\eta_{X}} \mathsf{Cover}(X)$$
$$\langle A_{0}, \varphi_{0}, \dots, A_{n}, \varphi_{n} \rangle \longmapsto \langle \mathcal{U}_{0}(A_{0}), \varphi_{0}^{-1}(I_{0}), \dots, \mathcal{U}_{0}(A_{n}), \varphi_{n}^{-1}(I_{0}) \rangle$$
where

$$\mathcal{U}_0(A) = \left\{ \varphi^{-1}(]-1,1[) : \varphi \in A \right\}.$$

• Let $(\mathsf{Tight} \circ C_p)' \xrightarrow{\varepsilon} \mathsf{Cover}'$ be such that

$$\begin{array}{ccc} (\mathsf{Tight} \circ \mathsf{C}_{\mathrm{p}})'(X) & & \xrightarrow{\varepsilon_{X}} & \mathsf{Cover}'(X) \\ \langle A_{0}, \varphi_{0}, \dots, A_{n}, \varphi_{n} \rangle & \longmapsto & \langle \mathcal{U}_{0}(A_{0}), \varphi_{0}^{-1}(I_{0}), \dots, \mathcal{U}_{n}(A_{n}), \varphi_{n}^{-1}(I_{n}) \rangle \\ \text{where} \end{array}$$

$$\mathcal{U}_n(A) = \left\{ \varphi^{-1}\left(\left\lfloor \frac{-1}{n+1}, \frac{1}{n+1} \right\rfloor \right) : \varphi \in A \right\}_{\mathbb{R}, n \in \mathbb{R}} \right\}_{\mathbb{R}, n \in \mathbb{R}}$$

Referências

- S. Awodey. Category Theory. Oxford Logic Guides, 2nd edition, 2010.
- [2] M. Scheepers. Combinatorics of open covers (III): Games, $C_p(X)$. Fund. Math., v. 152, n. 3, p. 231–254, 1997.
- [3] M. Scheepers. Remarks on countable tightness. Topology and its Applications, 161(1):407–432, 2014.
- [4] M. Duzi, P. Szeptycki and W. Tholen. Infinitely ludic categories. ???, 202?.

Děkuji!

Thank you!